Journal of Network Intelligence (©)2024 ISSN 2414-8105
Taiwan Ubiquitous Information Volume 9, Number 2, May 2024

Parallel Clustering Algorithm for High-dimensional
Data Combining Improved Fruit Fly Optimization
and Density Peak Clustering

Yufeng Zhao*

School of Electronics and IoT Engineering,
Chongqing Industry Polytechnic College
Chongging, 401120, P.R. China
zhaoyf@cqipc.edu.cn

Jie He

Lee Kong Chian Faculty of Engineering and Science,
Tunku Abdul Rahman University
Kuala Lumpur, 43000, Malaysia
hejie@cqgipc.edu.cn

*Corresponding author: Yufeng Zhao
Received June 28, 2023, revised September 17, 2023, accepted December 3, 2023.

ABSTRACT. To improve the clustering performance of complex high-dimensional data,
an improved density peak clustering (DPC) method is used for cluster analysis. The den-
sity values are calculated based on the kernel function of the density peak clustering, and
the distance and density values are sorted in descending order. The sample points corre-
sponding to larger values are selected as the centers of several clusters. The sample cate-
gory is determined by calculating the distance between each node and each cluster center
point, according to the set distance threshold. To prevent the clustering results from being
greatly disturbed by inappropriate distance threshold settings, the fruit fly optimization
algorithm (FFO) is introduced to optimize and improve the distance threshold parameter.
By continuously updating and optimizing the concentration of fruit fly populations, the
optimal fitness individual is obtained. To address the high time complexity of the FFO
algorithm, a parallel algorithm based on the Spark framework is proposed. Firstly, the
data is partitioned, and then local clustering is performed in each data space, and finally,
the local clustering results are aggregated for global clustering. Erperimental results show
that the proposed algorithm has the highest clustering accuracy, outperforming CNN and
non-parametric density peak clustering algorithms. This proves that by setting the odor
change rate range and other parameters of the fruit fly optimization algorithm reason-
ably, the clustering performance of different domain datasets can be effectively improved.
In addition, the parallel algorithm under the Spark framework achieves better results in
terms of computational efficiency compared to the original algorithm.

Keywords: High-dimensional data; Parallel clustering; Fruit fly optimization; Density
peak clustering; Distance threshold; Spark framework.

1. Introduction. With the development of the Internet, data has become increasingly
complex and multidimensional. In practical applications, high-dimensional data is be-
coming more common, and identifying relationships between data in high-dimensional
space is becoming increasingly important [1]. Cluster analysis is a commonly used unsu-
pervised learning algorithm that divides data objects into different groups based on their

749

750 Y. Zhao, J. He

relationships and features. Data objects within the same group exhibit better correlation
than those from different groups. By observing the characteristics of each subset through
cluster analysis, relationships or patterns between different subsets can be discovered and
analyzed [2].

In the absence of categorical information for samples, cluster analysis is based on the
similarity of sample features to determine the data groups, with samples in the same
group having high similarity and those from different groups having high dissimilarity
[3]. Cluster analysis methods generally require determining the initial cluster centers
and then iteratively optimizing to obtain the clustering results. Typical algorithms that
randomly set the initial cluster centers include K-Means [4], which uses the principle of
dividing samples based on the nearest distance in sample space, but is not suitable for
clustering non-spherical data (such as manifold data with spatial folding structures) [5,
6]. For irregularly shaped datasets, clustering cluster centers are defined based on density
center points, with typical algorithms such as DBSCAN defining clusters as the largest
set of density-connected points, which can divide high-density areas into clusters and
discover clusters of any shape in noise data [7]. Based on this, Density Peaks Clustering
(DPC) algorithm [8] was proposed based on density peaks, which defines cluster centers as
points with high local density and large distance from points with higher density, which
can help to determine cluster centers to some extent. In addition, methods based on
probability density distribution assume that different clusters within the data set follow
different probability density distributions, and all sample points converge to the local
maximum density, with points ultimately converging to the same local maximum density
being judged as belonging to the same cluster. These algorithms are suitable for non-
spherical data sets, but have high computational costs, with the Mean Shift algorithm
being a representative algorithm [9, 10].

When using the same clustering algorithm on the same dataset with different initial
parameters, there can be significant differences in the clustering results, and it is often
difficult to accurately determine the number of clusters [11, 12]. These two issues make it
challenging for users to select an appropriate clustering algorithm and find suitable param-
eters [13]. To address these problems and make clustering results more stable, researchers
have proposed ensemble clustering algorithms [14]. Ensemble clustering involves using a
series of basic clustering algorithms to learn from different parameter settings and data
subsets, and then integrating the results to obtain more stable and superior clustering
results than those obtained from a single algorithm [15]. Although ensemble clustering
algorithms can improve clustering performance compared to single basic clustering al-
gorithms, the computational complexity increases significantly, resulting in a significant
increase in computation time. Especially when dealing with high-dimensional massive
datasets, serial ensemble clustering algorithms are limited by factors such as the comput-
ing power, memory capacity, and disk speed of a single server [16]. Even algorithms such
as FastESC [17], EulerSC [18], and U-SENC [19] that use methods such as approximate
estimation to avoid constructing complete sparse similarity matrices to improve algorithm
efficiency in a single-machine environment, their computation time is still affected by pa-
rameters such as the total amount of data, data dimensionality, and number of iterations.
Distributed system technology uses the ”divide and conquer” approach, with the final
focus not on processing large amounts of data in batches, but on improving the algorithm
to run on distributed computing platforms, thereby improving computation speed.

In distributed computing platforms, the main focus is on MapReduce and Spark. Un-
der the MapReduce computing model, Tripathi et al. [20] proposed the MR-EGWO
(MapReduce-based Enhanced Grey Wolf Optimizer) algorithm, an enhanced grey wolf
optimization algorithm based on MapReduce, which optimized the clustering process by

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusteribg

introducing new variables and demonstrated the effectiveness of the MR-EGWO algorithm
in processing large-scale datasets through testing on the UCI benchmark dataset. Kim et
al. [21] proposed the density-based clustering algorithm DBCURE-MR for MapReduce
framework, which parallelized the cluster search operation and demonstrated the effec-
tiveness and scalability of the DBCURE-MR algorithm on different datasets. Sardar et
al. [22] designed the parallel K-means algorithm under the MapReduce computing model
and demonstrated its effectiveness through comparative experiments with existing serial
K-means algorithms. In [23], Spark’s advantages in memory parallel computing were
utilized to accelerate the calculation speed of the HBMC (Basin-Hopping Monte Carlo)
algorithm, and experimental results showed that the optimized HBMC algorithm based
on Spark has a faster convergence speed. Hosseini et al. [24] implemented a density-
based clustering algorithm based on Spark, which used the fuzzy weighted correlation
coefficient as a similarity measurement method and solved the 1/O load bottleneck prob-
lem in MapReduce clusters using RDD to store data. The superiority of the algorithm in
accuracy and efficiency was demonstrated through the experiment comparison.

High-dimensional data has the characteristics of data sparsity and the curse of dimen-
sionality. In the context of big data, traditional clustering algorithms face significant
challenges in scalability, and also suffer from the following two problems: (1) Different
clustering algorithms are better suited for different types of datasets and data structures
(such as category shape or size). For example, the K-means clustering algorithm is more
suitable for spherical data, while single-linkage hierarchical clustering is better at detect-
ing linkage patterns. (2) When using the same clustering algorithm on the same dataset
with different initial parameters, there can be significant differences in the clustering re-
sults, and it is often difficult to accurately determine the number of clusters. These two
issues make it difficult for users to select an appropriate clustering algorithm and find
suitable parameters. To address these problems, this paper proposes a parallel clustering
algorithm for high-dimensional data that combines Fruit Fly Optimization (FFO) algo-
rithm and improved DPC. An improved DPC algorithm is used to classify and organize
high-dimensional data, and the FFO algorithm is used to improve the multi-dimensional
feature clustering applicability of the traditional DPC algorithm. The core parameters of
the DPC algorithm are optimized to solve the problem of low data clustering performance
caused by randomly setting parameters. In addition, a strategy is proposed to implement
parallel running of the proposed algorithm on the Spark parallel framework, reducing
algorithm computation time and improving computational efficiency.

The rest of the text are organized as follows. In Chapter 2, background knowledge in-
cluding the DPC algorithm and the FFO algorithm are introduced. Chapter 3 explains in
detail the proposed parallel clustering algorithm, including the improved DPC algorithm
combined with FFO and the parallel implementation of the improved algorithm on the
Spark framework. Chapter 4 analyzes the performance of the proposed method through
experiments, provides comparison and analysis of the results with other methods. Finally,
Chapter 5 concludes the paper and points out the next research direction.

2. Research Background.

2.1. DPC algorithm. DPC is a density-based clustering algorithm that determines ini-
tial cluster centers by calculating sample attribute densities and distance values, and then
determines the category based on the distance between the sample point and the center
point. This algorithm is suitable for situations where the local density of clustering center
points is relatively high, and the distance between points with higher density than them
is relatively far.

752 Y. Zhao, J. He

Suppose the sample set X consist of a total of k categories C' = {C4,Cy, ..., Ci},
satisfying the condition & < N, where N is the total number of samples, and X =
CLUCyU...UC, C;NC; = 0(i # 7).

For any two sample points z; and z;, the distance r;; between them can be expressed
as [25]:

Tij = \/|513i1 — x4 |z —zpl + o+ e — @)? (1)
were n is the dimensionality, and the density p; of a point x; in a set of N points is given
by:

pi =Sy —72) (2)
J

Where r. represents the cutoff distance, which needs to be specified manually, and is
usually chosen to be 1% to 2% of the entire dataset. The kernel function x(z) is given

by:
1, <0
— ! 3
(@) {0’ " g

Since the kernel function is not differentiable, a Gaussian function is often used as a
replacement, and the calculation of p; is converted to:

2.
_ v
Pi = Z e 2rg (4)
J
The minimum distance §; of the point z; can be calculated as:

51'2 {mlnj(rj) i p >p] (5)

max;(r;;), otherwise

After calculating the density p; and distance §; for each of the N sample points, the
resulting values are used to generate the decision graph, with density values on the y-axis
and distance values on the x-axis. The multiplication of the density and distance values
for each point is given by:

Vi = pi - 0 (6)

The density p;, distance 9;, and product 7; are calculated for all sample points and then
sorted in descending order. Points with high values for all three criteria are selected as
cluster centers. Non-center points are assigned to the category of the closest center point
based on its distance value. Figure 1 shows the process of generating the decision graph.

2.2. FFO algorithm. The FFO Algorithm selects a search direction and step size based
on the concentration of food odor to obtain food during the search process. The FOA
algorithm can be mathematically described as follows: Let the initial position of a fruit fly
individual within its movement range be represented by X, and Y, then the position
update during its movement can be expressed as [26]:
Xi = Xinit + H,
Y; = Knit + Hr (7)
H, = H x [2 x rand() — 1]
Where H represents the maximum step size for the individual’s movement.
The relative distance of an individual to the origin can be calculated based on its

coordinates Xy and Yipi:
1
d=\/X?+Y? Siza (8)

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusteribg

Decision Map

A@
mﬂw OAEO

CIA E OAH

—
b

Figure 1. Example of the decision map generation process

Where 7 denotes the number of iterations. The odor concentration function is established
based on S; as:

Smell; = Function(S;) 9)

where Function is the fitness function. Smell; is updated through the movement of fruit
fly individuals.

The maximum value of the Smell; is denoted as BestSmell;, and the corresponding fruit
fly individual with the position Xj.s and Yies is selected as the initial position of the
new generation of fruit fly population.

The iterative process is repeated, and the maximum value of BestSmell; from all gen-
erations is selected as the optimal individual.

3. Improved Parallel DPC Algorithm.

3.1. Improved FFO algorithm. The basic FFO algorithm has three problems: 1)
variables take values in a continuous domain and cannot be directly applied to a discrete
domain; 2) the information of fruit fly individuals is consistent, making it difficult to
reflect the differences between different variables; 3) a fixed step size factor can easily
lead to unstable optimization results. Therefore, the algorithm needs to be improved.
To overcome the three problems of the basic FFO algorithm, three improvement strate-
gies are proposed: 1) The position parameters of fruit flies are discretized to ensure that
each decision variable takes values in a discrete integer domain. 2) Fruit fly classifica-
tion evolution is performed to distinguish between different types of decision variables
and allow them to be adjusted within different ranges. 3) The flight ability of fruit flies

754 Y. Zhao, J. He

is adjusted by introducing a step size factor 8; to improve the stability of optimization
results.

The steps of the improved Fruit Fly Optimization (IFFO) algorithm are as follows:

1) Initialize hyperparameters, including the population size (popsize), the number of
iterations (generation), and the flight range (dom).

2) Classify the decision variables into boolean variables x;, and discrete variables x.

3) Initialize the positions of the fruit fly population z,.s based on experience or ran-
domly, and restrict the variable values according to Improvement Steps 1 and 2. That is,
Tposb,; 15 the j-th boolean variable, and @04 is the j-th discrete variable.

4) Limit the mobility of fruit flies based on their sense of smell and vision, and introduce
a step size factor according to Improvement Step 3. The range of §; is 0.270.5, and z; ;
is the j-th variable of the i-th fruit fly. The random value R € [—1,0, 1] represents the
flight direction of the fruit fly:

dbool(d if T ; 0s,b,j
v = {ran ool(dom), if 2;; € Tposp,; (10)

Tpos,d,j + Bj X |d0mU,j - doml,j’ X R7 if Tij € Tpos,d,j

5) Substitute z; ; into the objective function of minimum cost and solve for it, to obtain
the odor concentration Smell; at the current location of the fruit fly:

Smell; = Function(z; ;) (11)

6) Identify the individual fruit fly in the population with the optimal odor concentration
value.

7) Retain the optimal odor concentration value and have all fruit flies converge towards
that position.

8) Determine whether the algorithm has reached the stopping criterion. If yes, termi-
nate the algorithm. Otherwise, repeat steps 4~6 and compare the current best fitness
function value with the historical best fitness function value. If the current best fitness
function value is better, update the historical best fitness function value and execute step
7.

9) Remove any redundant values of decision variables and output the optimal result.

3.2. IFFO-based DPC. In the implementation process of the DPC algorithm, the se-
lection of parameter r. is crucial as it determines the clustering accuracy and efficiency
of DPC. Due to its strong dependence on r., DPC performs poorly in handling unevenly
distributed sample points. Therefore, this paper proposes the improvement of DPC using
the IFFO algorithm. After optimizing DPC, the parameter selection for r. is no longer
necessary. Instead, an adaptive step size is introduced to improve its applicability. After
finding the optimal r. using IFFO, the DPC algorithm utilizes the IFFO to perform data
clustering with the obtained r. by comparing distance and density values to determine
the clustering center. Figure 2 presents the clustering process of the proposed method.

3.3. Parallel algorithm under Spark framework. In order to reduce the computation
time and improve the computational efficiency of the algorithm, a strategy for parallel
execution on the Spark parallel framework is proposed. The main idea is to divide the
dataset into multiple data regions in space, with the partitioned dataset scattered among
the computing nodes of the Spark cluster. Each node calculates the local data on the
node through the parallel IDPC algorithm to obtain the local clustering center points,
and finally, the locally clustered results are again globally clustered to complete the entire
clustering process. Figure 3 shows the flowchart of the parallel algorithm.

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusteribg

| Data Input l
¥

| DPC Model |
¥

| Distance Matrix Calculation |

¥

Optimizing the distance threshold
of DPC based on IFFO

)
Obtain the best individual

'

Caleulate the sample point density value,
draw a decision-making map,
and select the center point in the cluster

'

The remaining point assigniment is
done based on the density value

| Output all sample point classes l
]
l Sample Clustering Output I

Figure 2. Clustering flowchart of improved DPC

]

Data partitioning, Summary of center
node allocation points of each node

| I

Calculation ol distances
within each node

I I

Summarize the results,
calculate global de

{ i

Collection of local centers
for ¢ach node

Local Clustering End

Cluster merge

Class merge

Final clustering output

Calculate boundary area,
remove noise points

L

Figure 3. Parallel algorithm based on Spark framework

Step 1. Uniformly partition the data and slice it into spatially divided data regions
according to the nodes, so that the data is divided into small, essentially consistent unit
data, and each node is responsible for calculating a block of data. It should be noted that

756 Y. Zhao, J. He

the local density calculation after partitioning is independent of other spatial data outside
this node, and is only related to the local data center of the current node’s data space.
However, the truncation distance is calculated by summarizing the distances of data points
calculated by each node after data partitioning to calculate the global truncation distance
de.

Step 2. Calculate the center points of each node separately and find the clustering
center points of the data block of that node.

Step 3. Merge local clusters globally. When dividing the data into grids for inter-data
exchange, the dataset is partitioned into partially overlapping different data grid units to
enable each sub-node to perform independent local data clustering. These overlapping
partial regions contain some common data objects, which can be simply understood as a
part of a cluster after global clustering. In the stage of merging local clusters globally in
the third part, the algorithm can evaluate these common data objects, namely the features
of these edge critical points, to determine the local clusters that need to be merged.

1) Input the local clustering results D of each node, where the data format of D is
expressed in the form of Key-Value required by the Spark framework. The value carried
by a data point ¢ as the Key includes: the ID of the data unit where the data point ¢
is located, the ID of the local cluster to which the data point ¢ belongs within the data
unit, and whether the data point is a core member. The final form can be represented as
(q7 (qid; qels QCore))

2) Group the clustering results D by (¢, (¢id, e, Geore)), and judge the data groups to
determine whether the number of data points is greater than 1, that is, whether the point
is an edge critical point. Data points with a number of data points greater than 1 in the
data group are listed as a data set M.

3) Traverse the data set M and judge whether the data points in the data set are core
members based on ... Determine the important merging points in this way and list
them as a new data set M.

4) Build a relationship connectivity graph based on ¢, in M, to obtain the relationship
set T'. Only a portion of the data information in M, needs to be extracted in set T', and
the data representation of set T is ((q1,,, 91.1), (42,4 42.)), Where qu,, and gz, represent two
adjacent grid units.

5) Initialize the relationship connectivity graph g¢o,,, with all local clusters as the vertices
of ¢»,,, and each vertex will have an edge pointing to it.

6) Traverse the relationship set 7" and use ((q1,,,¢1,,), (¢2,4, G2.,)) as edges to fill the
relationship connectivity graph G.

7) Obtain the relationship mapping between local clusters and global clusters through
the complete relationship connectivity graph G.

8) Update the cluster labels.

4. Experiments and Analysis.

4.1. The experimental environment and dataset configuration. The Spark en-
vironment is deployed in a virtual cluster environment using VMware Workstation Pro
15. The host server for the simulated cluster environment is PowerEdge R740, and the
operating system for the virtual environment is Ubuntu 18.04.1. The virtual cluster con-
figuration and other detailed information are shown in Table 1.

To experimentally measure the accuracy, computational efficiency, and other indicators
of the proposed algorithm, this paper selects 6 unsupervised datasets from the UCI data-
base and text datasets [27]. The 6 datasets used for unsupervised clustering algorithms
are: 20 Newsgroup, Glass, Iris, Letters, Pendigits, and Sonar. Among these 6 datasets, the

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusteribg

Table 1. Experiment Environment.

Item Description
Operating System Windows 10
CPU 15-12400F 2.5 GHz
RAM 64 GB
Hard Disk Drive 960 GB NVME SSD
Virtual Software VMware Workstation Pro 15
Virtual Machine Operating System Ubuntu 18.04.1
Virtual Machine Configuration 2 processor + 2GB RAM + 20GB disk
Spark Version 12.0.1

text datasets use the most commonly used 20 Newsgroup and Letters for text clustering
experiments, with 20 Newsgroup including 20 news groups and nearly 20,000 messages.
The remaining datasets are from the UCI database, and the detailed information of the
unsupervised datasets is shown in Table 2.

Table 2. Dataset Statistics.

Dataset Class Number Feature Dimensions Data Volume
20 Newsgroup 26214 20 18864
Glass 6 10 214
Iris 3 4 150
Letters 26 16 20000
Pendigits 10 16 10992
Sonar 2 60 208

The experimental dataset uses the Standard dataset. However, since the initial dataset
only has a data size of 600x60 and a file size of 81KB, the original dataset is too small to
meet the data volume requirements for performance testing. Therefore, in the experiment,
the data in Standard is replicated and extended (to avoid completely duplicate samples
with the original sample, the data of the replicated samples is the source data plus a
random value in the range of [-0.1, 0.1]), and the original dataset is expanded by 10
times, 50 times, 100 times, 500 times, 1000 times, and 5000 times, respectively. The data
volume and size are shown in Table 3.

Table 3. Expanded Dataset

Dataset Expansion Factor Dataset Scale File Size

Standard 1 600 x 60 81 KB
Standard x 10 10 6000 x 60 816 KB
Standard x 50 50 30000 x 60 4082 KB
Standard x 100 100 60000 x 60 8161 KB
Standard x 500 500 300000 x 60 401807 KB
Standard x 1000 1000 600000% 60 81615 KB
Standard x 5000 5000 3000000 x 60 408078 KB

4.2. The performance simulation of the decision graph with different sample
sizes. In the IDPC clustering process, the core content is to obtain an accurate and
effective decision graph, which is used to select appropriate clustering center points, and

758 Y. Zhao, J. He

then obtain the sample category based on the distance between the sample points and each
center point. 1000 samples are selected from the 20 Newsgroup and Letters datasets for
clustering, and the decision graphs obtained by the proposed algorithm for the 2 datasets
are shown in Figure 4. As shown in Figure 4, different clustering decision graphs are
obtained by selecting different data dimensions. When the data dimension is 16 for the
Letters dataset, most of the sample points are distributed in the range of 4 < 1, and the
sample point distribution range on the p axis is relatively wide. When the data dimension
increases to 20 for the 20 Newsgroup dataset, the number of points located at § > 2 and
p > 50 increases significantly. According to the center point selection strategy of the IDPC
algorithm, the number of candidate center points increases, making it more difficult to
select appropriate center points. Overall, as the sample data dimension increases, the
maximum value of the local density p increases. This is because when the sample data
dimension increases, the number of nodes within the clustering center threshold range
increases, leading to an increase in the density value.

35¢ . Sr *
™
3.0F 4} .
25F .
3t “
o 201 o
1.5 2 |
*

0 10 20 30 40 50 60

(a) The relationship between § and p in letters (b) The relationship between ¢ and p in 20
dataset. Newsgroup.

Figure 4. Examples of the decision graphs.

4.3. The clustering performance with different R value ranges. Firstly, in the
improved FFO algorithm, the odor concentration change rate range is set to [0.7, 1.4], and
different ranges [Rpin, Rmax] are used for the proposed algorithm’s clustering performance
simulation on 6 sample sets, as shown in Table 4, and the optimal accuracy values are
highlighted in bold. From Table 4, it can be seen that the upper and lower limits of R have
a significant impact on the clustering algorithm’s performance for the same dataset. This
may be because the range of R affects the search step size and is sensitive to oscillations
when optimizing r. in DPC, making it difficult to obtain the r. value that optimizes
clustering performance. In the clustering process of the 6 different datasets, oscillations
in accuracy due to changes in the R range were observed. Therefore, the R range of
FOA has a significant impact on clustering performance for sample data. Considering
the significant differences in the clustering performance of the 6 different datasets, in
the subsequent experiments using the improved FOA+DPC clustering simulation, the R
value range with the highest accuracy was selected for simulation.

4.4. Comparison and analysis. In order to verify the improvement performance of
the proposed method on data clustering, DPC, FOA+DPC, and proposed IFOA+DPC
algorithms were used to simulate clustering on the experimental dataset, and the com-
parison results are shown in the Figure 5. It can be seen that in terms of clustering
accuracy performance, the difference between the DPC algorithm and the FOA-improved

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusterihg

Table 4. The impact of Ryax and Ry, on the accuracy of the proposed method

(%).
Rmax

Dataset Fomin i1 12 13 14
0.7 36.17 36.52 36.40 35.85
20 Newsgroup 0.8 36.22 36.73 36.33 35.73
0.9 36.34 36.60 35.98 35.40
1.0 36.09 36.18 35.77 35.28
0.7 57.51 57.34 5772 57.26
Cilass 0.8 57.67 57.75 57.12 57.36
0.9 57.21 57.85 57.44 57.08
1.0 57.69 57.28 57.19 57.23
0.7 91.36 91.56 91.44 91.80
- 0.8 91.54 91.26 91.88 92.01
0.9 91.59 92.15 91.37 91.84
1.0 91.59 91.29 91.42 91.31
0.7 37.10 36.81 37.28 36.95
Lettors 0.8 37.03 37.45 36.51 37.08
0.9 36.75 36.47 36.89 37.09
1.0 36.55 36.63 36.60 36.63
0.7 64.31 65.18 65.00 64.08
Pendigits 0.8 64.79 65.00 65.23 64.80
0.9 64.77 65.80 64.97 64.44
1.0 64.71 65.04 64.42 63.99
0.7 59.51 61.16 61.18 60.97
Sonar 0.8 61.22 61.85 62.88 61.78
0.9 61.82 62.48 62.55 62.01
1.0 61.77 62.56 62.28 61.80

DPC algorithm is significant. This indicates that using only the DPC algorithm for data
clustering is not very applicable, and randomly setting the rc value of DPC reduces its
performance. Therefore, it is necessary to optimize the rc value of DPC using intelligent
algorithms. The Silhouette values of FOA+DPC and prposed IFOA+DPC algorithms are
close, but the performance of FOA is further enhanced after improvement. The proposed
algorithm has the best clustering performance, followed by FOA+DPC, and DPC has
the worst performance. This shows that after optimizing the rc of the DPC clustering
algorithm using IFOA, the clustering stability is enhanced. This is mainly because the
randomly set rc value interferes with the clustering stability during DPC operation, and
FOA optimization obtains rc value that is more suitable for DPC clustering, reducing the
clustering performance oscillations. In terms of iteration times, the DPC algorithm after
IFOA optimization has fewer iterations, because in the proposed algorithm, the selection
of DPC clustering centers is more appropriate, and fewer iterations are required to achieve
the set clustering accuracy threshold.

4.5. Clustering accuracy comparison. The algorithms were compared and tested in
a single-machine environment. Different algorithms were applied to the datasets, 5 in-
dependent runs were performed, and the average of the clustering results was selected
for comparison. DBSCAN [7], Mean-shift [9], K-means [4] clustering, and the proposed
algorithm were used to simulate the performance of the samples in Table 5, where in the

760 Y. Zhao, J. He

40r
3.5
— DPC
- 3.0 FOA+DPC
5 s [TFOA+DPC
2 25
g: 2.0
_:’5::.‘
go1s |
1.0 k_\
0.5¢ ~—
| I 1 1 .
0 20 40 60 80 100

Iteration times

Figure 5. Standard deviation of the clustering accuracy for different methods.

proposed algorithm, the R value range was set to the optimal range. From the results, it
can be seen that the proposed algorithm has the highest clustering accuracy, followed by
the K-means algorithm, and the Mean-shift clustering has the lowest accuracy. This fully
demonstrates the clustering performance and stability of the proposed algorithm.

Table 5. Clustering accuracy comparison (%).

Dataset DBSCAN Mean-shift K-means Prop9sed
Algorithm
20 Newsgroup 26.17 30.16 35.08 36.73
Glass 43.35 52.85 56.27 57.85
Iris 78.92 85.40 90.98 92.15
Letters 29.85 35.19 37.33 37.45
Pendigits 49.93 61.28 64.77 65.80
Sonar 51.08 55.32 60.17 62.88

4.6. Performance analysis of parallel algorithm. In order to better verify the dif-
ference in computing time between the parallel algorithm and the original algorithm on
the data volume, this simulation experiment verifies this performance characteristic by
continuously increasing the data volume. All the experimental datasets are merged and
divided, and 6 data sets of different sizes, 1 000, 5 000, 10 000, 15 000, 20 000, and
25 000, are generated for clustering analysis. The clustering execution time results are
shown in Figure 6, with the unit of running time being ms. It can be seen that in the
initial stage, when the data volume is small, there is not much difference in time consump-
tion between the single-machine IFFO-DPC algorithm and the parallel algorithm based
on Spark. However, with the increase of data volume, the parallel algorithm based on
Spark gradually shows its computing advantage, and the algorithm parallelized by Spark
is obviously much faster than single-machine computing. Therefore, the conclusion can
be drawn that in large-scale data computing, the proposed algorithm based on parallel
Spark is more efficient.

Parallel clustering algorithm for high-dimensional data combining improved fruit fly optimization and density peak clusterifig

==e== Spark = = = Single Machine
6000

5000 -
4000 o’

3000 -

Runtime /ms
A
AN

2000 — - -

1000 Lo

1000 5000 10000 15000 20000 25000
Data Volume

Figure 6. Comparison of running time between parallelization and stand-alone
algorithms (ms).

5. Conclusion. Although clustering ensemble algorithms have improved clustering per-
formance compared to single-base clustering algorithms, serial clustering ensemble algo-
rithms are always limited by factors such as server computing power, memory capac-
ity, and disk speed when facing high-dimensional massive datasets, and it is difficult to
meet the speed requirements of the big data era. In order to improve the low computa-
tional efficiency of existing clustering ensemble algorithms in handling high-dimensional
and large-scale data, a parallel clustering algorithm that can adapt to high-dimensional
massive data is proposed. The experimental results show that by improving the DPC
algorithm for high-dimensional data clustering, high clustering accuracy can be obtained.
By optimizing the core parameter values p and ¢ of the DPC algorithm and selecting the
point with a larger median value as the clustering center point for clustering, compared
with commonly used high-dimensional data clustering algorithms, the proposed algorithm
can achieve higher clustering accuracy performance and high clustering efficiency, and has
high applicability in high-dimensional clustering.

REFERENCES

[1] Y. Zhou, Chalapathi N., Rathore A., Zhao Y., and B. Wang, “Mapper Interactive: A scalable,
extendable, and interactive toolbox for the visual exploration of high-dimensional data,” in 2021
IEEFE 14th Pacific Visualization Symposium (PVS 2021), IEEE, 2021, pp. 465-468.

[2] K. Djouzi, and B.-B. Kadda, “A review of clustering algorithms for big data,” in the 2019 Interna-
tional Conference on Networking and Advanced Systems (ICNAS 2019), IEEE, 2019, pp. 1-6.

[3] D. Granato, “Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for
multivariate association between bioactive compounds and functional properties in foods: A critical
perspective,” Trends in Food Science & Technology, vol. 72, no.5, pp. 83-90, 2018.

[4] S.-D. Huang, Z. Kang, Z.-L. Xu, and W.-H. Liu, “Robust deep k-means: An effective and simple
method for data clustering,” Pattern Recognition, vol. 117, no. 11, pp. 107996, 2021.

[5] T.-Y. Wu, A. Shao, and J.-S. Pan, “CTOA: Toward a Chaotic-Based Tumbleweed Optimization
Algorithm,” Mathematics, vol. 11, no. 10, pp. 2339, 2023.

762

(6]

[24]

[25]

[26]

Y. Zhao, J. He

T.-Y. Wu, H. Li, and S.-C. Chu, “CPPE: An Improved Phasmatodea Population Evolution Algo-
rithm with Chaotic Maps,” Mathematics, vol. 11, no. 9, pp. 1977, 2023.

K.-M. Kumar, and A.-R.-M. Reddy, “A fast DBSCAN clustering algorithm by accelerating neighbor
searching using Groups method,” Pattern Recognition, vol. 58, pp 39-48, 2016.

Y. Li, L. Sun, Y. Tang, and W. You, “A review of related density peaks clustering approaches,”
in 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC 2022), IEEE, pp. 145-149, 2022.

L. You, H. Jiang, J. Hu, C.-H. Chang, L. Chen, X. Cui, and M. Zhao, “GPU-accelerated faster
mean shift with euclidean distance metrics,” in 2022 IEEE /6th Annual Computers, Software, and
Applications Conference (COMPSAC 2022), IEEE, 2022, pp. 211-216.

F. Zhang, T.-Y. Wu, and Y. Wang, “Application of quantum genetic optimization of LVQ neural
network in smart city traffic network prediction,” IEEE Access, vol. 8, pp. 104555-104564, 2022.

A L H P Shaik, M K Manoharan, and A K Pani, “Gaussian mutation—spider monkey optimization
(GM-SMO) model for remote sensing scene classification,” Remote Sensing, vol. 14, no. 24, pp. 6279,
2022.

L. Kang, R.-S. Chen, and N. Xiong, “Selecting hyper-parameters of Gaussian process regression
based on non-inertial particle swarm optimization in Internet of Things,” IEEE Access, vol. 7, pp.
59504-59513, 2019.

C.-M. Chen, S Lv, J. Ning, “A genetic algorithm for the Waitable time-varying multi-depot green
vehicle routing problem,” Symmetry, vol. 15, no. 1, pp.124, 2023.

F.-J.Li, Y.-H. Qian, J.-T. Wang, C.-Y. Dang, and L.-P. Jing, “Clustering ensemble based on sample’s
stability,” Artificial Intelligence, vol. 273, pp. 37-55, 2019.

M. Zhang, “Weighted clustering ensemble: A review,” Pattern Recognition, vol. 124, 108428, 2022.

A. Nazari, A. Dehghan, S. Nejatian, V. Rezaie, and H. Parvin, “A comprehensive study of clustering
ensemble weighting based on cluster quality and diversity,” Pattern Analysis and Applications, vol.
22, pp. 133-145, 2019.

L. He, N. Ray, Y.-S. Guan, and H. Zhang, “Fast large-scale spectral clustering via explicit feature
mapping,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp. 1058-1071, 2018.

J.-S. Wu, W.-S. Zheng, J.-H. Lai, and C.-Y. Suen, “Euler clustering on large-scale dataset,” IFFE
Transactions on Big Data, vol. 4, no. 4, pp. 502-515, 2017.

D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, C.-K. Kwoh, “Ultra-scalable spectral clustering and
ensemble clustering,” IEEE Transactions on Knowledge and Data Engineering, vol, 32, no. 6, pp.
1212-1226, 2019.

T.-A. Kumar, K. Sharma, and M. Bala, “A novel clustering method using enhanced grey wolf
optimizer and mapreduce,” Big Data Research vol.14, pp.93-100, 2018.

Y.-H. Kim, K. Shim, M.-S. Kim, and J.-S. Lee, “DBCURE-MR: An efficient density-based clustering
algorithm for large data using MapReduce,” Information Systems, vol. 42, pp. 15-35, 2014.

T.-H. Sardar, and Z. Ansari, “An analysis of MapReduce efficiency in document clustering using
parallel K-means algorithm,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 200-209,
2018.

Y.-H. Yang, J.-F. Zhang, J.-B. Wang, X.-B. Xu, G.-F. Shao, and Y.-H. Wen, “Spark-based improved
basin-hopping monte carlo algorithm for structural optimization of alloy clusters,” Physics Letters
A, vol. 383, no.5, pp. 464-470, 2019.

H. Behrooz, and K. Kiani, “A big data driven distributed density based hesitant fuzzy clustering
using Apache spark with application to gene expression microarray,” Engineering Applications of
Artificial Intelligence, vol.79 pp. 100-113, 2019.

J.-H. Cai, H.-L. Wei, H.-F. Yang, and X.-J. Zhao. “A novel clustering algorithm based on DPC and
PSO,” IEEE Access, vol. 8, pp. 88200-88214, 2020.

T. Bezdan, C. Stoean, A.-A. Naamany, N. Bacanin, T.-A. Rashid, M. Zivkovic, and K. Venkatacha-
lam, “Hybrid fruit-fly optimization algorithm with k-means for text document clustering,” Mathe-
matics, vol. 9, no.16, 1929, 2021.

S. Aggarwal, A. Verma, and J. Singh, “Application based categorization of datasets for implementing
data mining techniques,” In 2nd Global Conference for Advancement in Technology (GCAT 2021),
IEEE, 2021, pp. 1-7.

