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Abstract
Face inpainting is a significant problem encountered in many image restoration tasks, in which various methods based on

deep learning are explored. Existing methods cannot restore enough structure details as the masked input only provides

limited information. In this paper, a novel reference-guided face inpainting method is proposed to generate inpainting

results more similar to people themselves, which restores the missing pixels by referring to a reference image besides an

original masked image. Concretely, another reference image with the same identity as the masked input is utilized as a

conditional input to constrain the generated coarse result of the first inpainting stage. Furthermore, a reference attention

module is designed to restore more textural details by computing the similarity between the pixels of the coarse result and

the reference image. The similarity is further represented by the similarity maps, which are deconvolved to reconstruct the

pixels of the missing regions. Extensive experimental results on CelebA datasets and LFW datasets demonstrate that our

proposed method can generate an image with more similar features to people themselves and achieves superior perfor-

mance to the state-of-the-art methods quantitatively and qualitatively.
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1 Introduction

Image inpainting, an essential task in image processing,

aims to fill the missing or masked regions in images with

plausibly synthesized contents. It is a fundamental problem

in low-level vision as it can be utilized for repairing

damaged images or reconstructing the pixels of the missing

regions. With the development of deep learning technol-

ogy, digital image inpainting based on deep learning has

aroused widespread interest in computer vision for the past

years.

There are two broad approaches for image inpainting in

computer vision: patch matching using low-level image

features and feed-forward generative models with deep

CNNs, respectively. The former is a traditional approach

[1–5], in which the best matching texture patches are

sampled from a source image and then pasted into a target

image to reconstruct the missing area. For instance, Wil-

czkowiak et al. [5] proposed a technique that automatically

adjusts, clones large image patches, and optimizes the

search areas to find the most appropriate patches. Patch-

Match [1] achieved real-time image editing by a random-

ized patch search algorithm. These methods employ the

low-level features of the given context and propagate the

local image appearance around the target holes to fill the

holes. However, since low-level information is insufficient

to infer semantical contents in missing regions, the above

methods may produce artifacts, blur, and other problems

when they complete images with complex textures. In

recent years, the continuous development of CNNs [6, 7]

has made new progress in the field of vision. The latter

deep CNNs-based approach [8–14] overcomes the defect

that only low-level features cannot predict high-level

semantics in the holes. The methods with Generative

Adversarial Networks(GAN) [15] and CNN formulate

inpainting as an image generation problem. Furthermore,

high-level recognition and low-level pixel synthesis are

formulated into an Encoder-Decoder network, which is

trained with adversarial networks to encourage the coher-

ency between generated and existing pixels. Notably, some
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works [12] demonstrate that dilated convolutions can be

utilized to enlarge receptive without consuming extra

computational cost to optimize image inpainting. To better

complete images with irregular holes, Yu et al. [11] pro-

posed the gated convolutions with dynamic feature gating

mechanism based on partial convolutions introduced by

Liu et al. [13]. In addition, Yu et al. [9] introduced a

contextual attention layer to borrow the related feature

patches from distant spatial locations explicitly. These

works can generate new content from highly structured

images. However, the input of the above methods is mainly

only a single image, and the information for reference is

not enough for the face inpainting tasks with complex

textures. Therefore, it is a challenging task to restore high-

quality images that are more similar to people themselves.

In recent years, a reference-guided image processing

method incorporating a reference image to assist the image

processing task has been proposed and becomes a new

branch. It has been proven to be effective in various visual

tasks, especially in Super-Resolution(SR) [16–21]. How-

ever, these methods cannot be directly applied to face

inpainting. That is because face inpainting needs to learn

the feature representation of the holes from existing pixels,

and then generate the missing pixels of the holes through

texture and structure matching. In this process, the original

holes are empty. While in Super-Resolution, low-resolution

images generally are obtained by convolution of clear

images and blur kernels.

Therefore, it is important and interesting to restore a

high-quality face image by incorporating a reference image

into the network. In this paper, we propose a reference-

guided deep face inpainting method for irregular holes, in

which the masked facial image is restored by referring to

people’s own image. Our proposed method pays more

attention to the reference image information in addition to

the masked input information. Therefore, our network can

get the output with more precise textures and more similar

content. The main contributions of this paper are as

follows:

This paper proposes an end-to-end reference-guided

face inpainting method to generate inpainting results more

similar to people themselves, converts the traditional gen-

erative adversarial repair model to a conditional generative

model. The generated pixels refer to the reference image

besides referring to the original masked image.

Another image with the same identity as the masked

input is added to guide the inpainting. And a novel refer-

ence attention layer is designed to focus on related patches

at the reference image to reconstruct a final output that is

more similar to people themselves.

To the best of our knowledge, our method is the first

attempt to reference-guided face inpainting. Evaluations on

CelebA datasets and LFW datasets further validate the

effectiveness of our proposed method, and achieve com-

petitive qualitative results and superior quantitative results

over the exsiting state-of-the-art methods.

2 Related work

In the Section, we briefly review the previous work of the

traditional image inpainting, deep image inpainting, and

guided image inpainting.

2.1 Traditional image inpainting

There are various approaches proposed for the image

inpainting task. One of the early image inpainting

approaches is diffusion-based image synthesis. This tech-

nique mainly used low-level features to fill holes by

copying or borrowing surrounding textures [22–24]. These

methods can only fill small holes, and noticeable artifacts

and noise will appear when dealing with large missing

areas or non-stationary image data. Patch-based approaches

have been proposed to fill large holes in natural images,

which can perform more complicated image completion

than diffusion-based techniques. Simakov et al. [25] pre-

sented a bidirectional patch similarity-based approach to

better model non-stationary visual data for inpainting,

object removal, and more applications. However, the cal-

culation of patch similarity is very resource-consuming, so

this method is not widely used. Later works used patch

matching [1] to iteratively search for the best fit patch,

which can fill the holes and produce smooth results. It is

seen that these methods can produce plausible texture

generation in the holes. But the above methods are inade-

quate to fill in holes on complicated structures because of

their dependence on low-level features such as the sum of

squared differences of patch pixel values.

2.2 Deep image inpainting

Recently, deep neural networks including GANs and CNNs

[26] exhibit excellent performance in image processing.

Existing approaches mainly focus on distilling information

from high-level features. Ding et al. [27] showed that by

integrating low-level information, performance can be

improved with enhanced feature representation and accu-

rately located discriminative regions. Chang et al. [28]

showed that it is possible to cultivate subtle details without

the need for overly complicated network designs or train-

ing mechanisms - a single loss is all it takes. In addition,

Deng et al. [29] proposed a novel High-Quality Generative

Adversarial Network (HQ-GAN) for controllable editing of

multiple face attributes in high-resolution images. It pro-

vides ideas for exploring high-resolution image restoration.
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As for the use of deep learning methods for image

restoration, Pathak et al. [8] introduced a deep CNNs-based

Context Encoders(CE) network, which is trained to directly

reconstruct the missing region by combining adversarial

loss [15] and L2 loss. CE utilized the encoder to capture the

compact latent feature representation and then employed

the decoder to reconstruct the missing area. Lizuka et al.

[12] improved CE by proposing global and local discrim-

inators as adversarial losses. A local discriminator focuses

on a small region centered around the inpainting regions,

and a global discriminator is trained on the entire image,

where Poisson blending is applied as a post-processing to

combine global and local results. Yeh et al. [30] inferred

the content of arbitrarily large missing areas in the image

based on the semantic information of the image. Yu et.al.

[9] introduced a method with a refinement network with the

contextual attention layers to replace the post-processing

mentioned above. Furthermore, Yu et al. [11] proposed

gated convolution for inpainting irregular masked image,

which optimized partial convolution [13] by using soft

gating instead of the original hard gating, and achieved the

state-of-the-art performance for irregular image inpainting.

Que et al. [31] presented a unified framework for single

image-based rain removal that handles various types of

rainy images, which has great significance of reference for

inpainting various holes areas. In order to reconstruct more

details, Nazeri et al. [32] proposed a two-stage model

EdgeConnect, which comprises of an edge generator fol-

lowed by an image generative network. More recently,

Zhang et al. [33] integrated global semantics and local

features in a unified image generator with a solid ability to

learn and leverage semantic priors. He et al. [34] applied

face restoration to recognition to improve visual quality

and optimize recognition results. These methods have

shown impressive results for generating plausible visual

details. However, the input of these methods is only a

single image resulting in insufficient information for ref-

erence. The generated result may be distorted, and the

similarity to themselves is not high when used for complex

face inpainting.

2.3 Guided-based image inpainting

There have been many explorations in guided image pro-

cessing [16–21, 35–40] to solve the problem of insufficient

reference information for single-input. Specially, Hays

et al. [37] firstly utilized millions of photographs as a

database to search for an example image that is most

similar to the input, and then completed the image by

cutting and pasting the corresponding regions from the

matched image.

Recently, image processing, image compositing, and

restoration work with guidance have been continuously

developed. Wang et al. [41] proposed synthesizing high-

resolution photo-realistic images from semantic label maps

using conditional generative adversarial networks. Zhang

et al. [42] introduced colorization networks, which joined

user guidance as additional input. Sangkloy et al. [43]

proposed a deep generative network, which added sketched

boundaries and sparse color as guidance to synthesize

images. Inspired by the above work, Yu et al. [11]

employed sketch(or edge) as user guidance to extend the

image inpainting network. In addition, Li et al. [44] applied

the reference-guided method to image deblurring, which

correlated the high-quality reference image into the deep

network for a better deblurring effect. More recently, Zhou

et al. [45] also carried out work related to the reference-

guided image inpainting, which combined a variety of

colors and spatial transformations and achieved good

results. Moreover, for the face-swapping task, Li et al. [40]

proposed FaceInpainter, which implemented controllable

Identity-Guided Face Inpainting under heterogeneous

domains and showed excellent performance. However,

these works cannot be directly used in the irregular masked

face restoration work. To the best of our knowledge, the

paper is the first face inpainting task, which is guided by

another facial image with the same identity as the original

input.

3 Reference-guided face inpainting network

In the following subsections, this paper describes our

approach in detail. This paper firstly shows the architecture

of our proposed method, and then introduces the details of

the dilated gated convolution(conv), double attention lay-

ers, and the loss functions.

3.1 Previous inpainting method revisit

Based on convolutional and generative adversarial net-

work, inpainting with a single masked input is aimed at

repairing missing areas through large-scale data training.

Formally, given the masked target IMt with the mask M, the

network can restore the hole regions with specious content

to generate the result Io. The network can be expressed as

the mapping: G : IMt ! Io. Recently, inpainting network

was improved to a two-stage network with two discrimi-

nators, and used a more complex network to obtain better

inpainting results. The formula is expressed as:

G1 : I
M
t ! Ic; G2 : Ic ! Io; ð1Þ

where Ic represents the coarse inpainting results, G1 and G2

represent the generator of coarse and refinement inpainting

stage, respectively. In addition, the hallucinated edges [32]
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as a prior is introduced to the inpainting network, the

formula expression of the inpainting model becomes:

G1 : IMgray;C
M
gt ;M

n o
! Cpred;

G2 : IMt ;Ccomp

� �
! Io;

ð2Þ

where Cpred represents the predicted edge map, Ccomp is

calculated from Cpred. And IMgray and CM
gt denote the masked

grayscale counterpart and masked edge map, respectively.

After that, semantic priors, landmark priors and other

methods have been continuously proposed to improve the

repair results of the network.

3.2 Overview

The architecture of our proposed method is illustrated in

Fig. 1. The generator is mainly designed based on the

structure of the Encoder-Decoder. Given a masked input

IMt 2 RW�H�3 and a reference image Ir 2 RW�H�3 as the

inputs of our network. IMt can be expressed as:

IMt ¼ 1�Mð Þ
K

It; ð3Þ

where M 2 RW�H�1 represents a single-channel mask,

which indicates the hole regions with value one, and

elsewhere with zero. 1 stands for a tensor of the same shape

as the mask M, and
J

denotes element-wise

multiplication. In the stage of coarse inpainting, the inputs

IMt and Ir are down-sampled twice by gated convolution for

encoding. Then, the encoded results are extracted to high-

level features by dilated gated convolution. Moreover, two

up-sampling layers decode the high-level features to

reconstruct the coarse result Ic 2 RW�H�3. The coarse

inpainting stage can be expressed as the mapping:

G1 : IMt ; Ir
� �

! Ic. In the stage of refinement inpainting,

the coarse result Ic and the reference image Ir are taken as

the inputs to obtain the similarity between the generated

regions and effective regions. The generated regions rep-

resent the pixels generated in the missing areas by the

coarse inpainting. The effective regions include the refer-

ence image and the remaining regions except for the

masked areas. The similarity is further presented by the

similarity maps, which guide to reconstruct high-level

feature maps. Furthermore, the feature maps are decon-

volved by twice up-samplings to better generate the final

result Io 2 RW�H�3. The refinement inpainting stage can be

expressed as the mapping: G2 : Ic; Irf g ! Io. Finally, the

mapping of our entire generator is: G : IMt ; Ir
� �

! Io. As

for the discriminator, it is based on a convolutional net-

work, where the input consists of a generated final result Io
and a reference image Ir. As Fig. 1 shows, five convolu-

tions with kernel size 5 and stride 2 are stacked to capture

the feature statistics of Markovian patches. The output is a

Fig. 1 Overview of our framework for reference-guided facial image inpainting. The reference input is utilized as a conditional input to constrain

generated coarse results in the first stage and attended to provide more personal information by the reference attention layer in the second stage
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three-dimensional feature of shape Rw�h�c, where h, w,

and c represent the height, width and number of channels,

respectively. All feature elements are formulated to w�
h� c number of GANs focusing on different locations and

different semantics of input image. In summary, our entire

network consists of the above-mentioned two-stage gen-

erator and a discriminator, which are trained by our

improved loss functions.

For training, given a target image X, we sample a mask

M randomly. Input image IMt is corrupted from the target X

and the maskM as IMt ¼ 1�Mð Þ
J

It. Inpainting network

G receives the image pair ðIMt ; IrÞ, and then generates the

repair result Io. Training procedure is shown in Algorathm.

1, where i represents the number of loop, and i ¼ 1; 2; 3

represent three times loop calculations. In each epoch of

our training, the discriminator is updated three times with

ðIt; IrÞ, ðIo; IrÞ and Eq. (11) before the generator is

updated.

3.3 Coarse inpainting

A conditional generative network based on Encoder-

Decoder is designed to receive the masked input and the

conditional reference input in the coarse inpainting stage.

As shown in Fig. 1, five gated convolutions with different

strides are stacked to highlight the masked regions and

reference information in separate channels. Four dilated

gated convolutions with stride 1 and kernel size 3 are

stacked to capture the global features for each pixel of

high-level. By this way, these features can be deconvoluted

to generate better coarse inpainting results. The two con-

volutions are explained as follows.

The gated convolution It introduces a feature gate and a

mask gate to learn a dynamic feature selection mechanism

for each channel and spatial location. According to context,

mask, and reference, the mechanism not only selects the

suitable feature but highlights the masked regions and

reference information at the deep level to generate better

results. The formula is as follows:

Gx;y ¼ WT
g � X;

Fx;y ¼ WT
f � X;

Ox;y ¼ / Fx;y

� �K
r Gx;y

� �
;

ð4Þ

where Wg and Wf represent the gating convolution filter

and feature convolution filter to the input feature X. The r
stands for sigmoid function. Thus, the output value r Gx;y

� �
is between zero and one. / can be any activation function.

Our network chooses ELU function, which combines sig-

moid and ReLU functions. It has soft saturation on the left

side, no saturation on the right side and makes the exper-

iment converge faster. The ELU function is formulated as:

f ðxÞ ¼
x; x� 0;

a ex � 1ð Þ x\0:

(
ð5Þ

The dilated convolution It can expand the receptive fields

on each layer without increasing the number of weights by

spreading the convolution kernel. Specifically, the dilated

convolution operator for each pixel can be represented as:

Ox;y ¼
Xk0h
i¼�k0

h

Xk0w
j¼�k0w

Wk0wþi;k0
h
þj � Ixþgi;yþgj; ð6Þ

where k0h ¼
kh�1ð Þ
2

, k02 ¼
kw�1ð Þ
2

. kh and kw are the kernel

width and kernel height, respectively. g stands for the

dilation factor, the above equation represents standard

convolution with g ¼ 1. W is the convolution filter. Ix;y and

Ox;y are the input and the output, respectively. For sim-

plicity, the bias is ignored.

As shown in Fig. 2, the dilated convolution can obtain

more extensive spatial support for each pixel, compared

with the standard convolution that may not obtain enough

spatial support of the influencing region (such as the spatial

support X2 of pixel p2 cannot contain any effective infor-

mation outside of the hole). To overcome the problem, our

model applies the dilated convolution, which can effec-

tively perceive larger areas and more pixels outside the

hole when computing each output pixel. It can be seen in

the area X4 of Fig. 2.
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3.4 Refinement network with double attention

The dilated gated convolution layers process image fea-

tures with local convolutional kernel layer by layer thus are

not effective for restoring better texture details and more

consistent semantic structures. To overcome the limitation,

the attention mechanism is added to the refinement

inpainting network to optimize the final result. The atten-

tion layer can learn where to borrow or copy feature

information from known contextual and reference feature

patches to generate missing patches. The attention mech-

anism is designed into the double attention layer as shown

in Fig. 1 to pay attention to the contextual features and the

reference features at the same time. In addition, in order to

save more original input features information, a conven-

tional dilated gated convolutional layer is added in parallel,

thus forming a three-branch refinement repair encoder with

the double attention layer. The entire refinement inpainting

network composed of a three-branch Encoder and a

Decoder learns the mapping from the coarse result Ic and

the reference image Ir to the final output Io, expressed as

G2 : Ic; Irf g ! Io. How they work will be introduced as

follows.

3.4.1 Reference attention

Existing inpainting methods without a reference cannot

obtain enough information to generate the semantic and

structural details with the same identity as the input. In

addition, these inpainting models usually lack generaliza-

tion and diversity. Therefore, to refer to more information,

the reference attention is designed in the stage of refine-

ment inpainting. The reference attention layer can generate

more diverse and more efficient image pixels via borrow-

ing or copying from the reference image. In this part, the

network matches the correlation between generated pixels

from the holes and the reference pixels, and finds the

patches that are most similar to the generated holes in the

reference image. Before matching the correlation, the ref-

erence image Ir and the coarse result Ic are down-sampled

into high-level feature maps. As shown in Fig. 1, two down

samplings are performed by gated convolution with kernel

size 3, stride 2, and ELU activation faction.

At the same time, the single-channel mask matrix is

resized to the size of the high-level feature maps and sent

to the attention layer. The feature map of the hole regions is

extracted through calculation: Fh ¼ Fin

J
M, where Fin

and M represent the incomplete feature and the mask(the

holes with value 1), and
J

denotes element-wise multi-

plication. Then our model calculates the similarity between

patches of holes and reference, and deconvolves to obtain

the reconstructed holes feature map Fo
h , whose value of the

area outside the hole is all set to 0. The remaining effective

area after extracting the holes is Fq ¼ Fin

J
ð1�MÞ,

which is used to restore the final output feature map

Fr ¼ Fo
h þ Fq. Due to the full use of the gated convolution

of the single-channel mask, our model can respond to the

mask in the middle layer, so that the extracted hole regions

can obtain the expected result when performing the fol-

lowing similarity calculation and deconvolution.

The correlation between the reference and the hole

region is calculated pixel-wisely in the reference attention

layer. Specifically, as shown in Fig. 3, our network firstly

extracts patches(33) from the reference feature map and

reshapes them as convolution filters. To match the patches

from hole regions hpatch
� �

with reference patches rpatch0
� �

,

our model normalizes the convolution filters and use them

to perform convolution on the hole feature map. The

Fig. 2 Representation of spatial support. The dilated convolution can

obtain more extensive spatial support than standard convolution.

When using standard convolution, X1 and X2 represent the spatial

support of the pixel p1 and the pixel p2. When using dilated

convolution, X3 and X4 represent the spatial support of the pixel p1
and the pixel p2:

Fig. 3 Illustration of the reference attention layer. The convolution is

utilized to compute the matching score of patches of hole regions with

patches of reference feature(as convolution filters). Then the attention

score can be obtained by softmax and be deconvolved for

reconstruction
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measurement formula with the normalized inner product is

as follow:

Spatch;patch0 ¼ \
hpatch

k hpatch k
;

rpatch0

k rpatch0 k
[ ; ð7Þ

where Spatch;patch0 represents similarity of patches between

holes and the reference,
hpatch
khpatchk,

rpatch0
krpatch0 k

represent normalized

calculation and \; [ represents inner product calcula-

tion. Then our model weighs the similarity with scaled

softmax to get an attention score for each pixel of hole

regions. Furthermore, the reference patches extracted ear-

lier are utilized as deconvolution filters, which deconvolves

the attention score to reconstruct the feature map of the

hole regions. The reconstructed feature map of the missing

regions is merged with the effective regions remaining

after the hole regions are extracted. Then the final feature

map Fr with the same size as the output of the context

attention layer is obtained. Finally, the final feature map is

utilized to guide to generate the final inpainting result.

3.4.2 Contextual attention

The context attention layer is employed in conjunction with

the reference attention layer to generate missing pixels by

borrowing from its own surrounding pixels. In this part, the

input feature map performs self-attention to obtain useful

contextual information. Concretely, as shown in Fig. 4, our

model takes the same method as above to extract patches

and reshape them as convolutional filters. The difference is

that the network extracts patches from the input feature

map and matches the similarity between its own pixels.

The network utilizes the normalized inner product to

measure similarity:

Spatch;patch0 ¼ \
fpatch

k fpatch k
;

fpatch0

k fpatch0 k
[ ; ð8Þ

where both fpatch and fpatch0 represent the patches from the

same input feature map, Spatch;patch0 represents the similarity

of patches between the input and itself. Then our model

weighs the similarity with scaled softmax to get an atten-

tion score for each pixel. Notably, to avoid self-matching

of patches in the masked region, the single-channel mask is

applied to set those high scores obtained through self-

matching of patches to zero after getting an attention score.

Furthermore, the input patches extracted earlier are utilized

as deconvolution filters, which deconvolves the attention

score to reconstruct the second hole regions. In this way,

the feature map Fc is obtained from the contextual attention

layer. In addition, the feature map Fdg is obtained from the

third dilated gated convolution layer. Finally, our network

concatenates(concat) the feature maps Fr, Fc, and Fdg to

reconstruct the final result with more details.

3.5 Improved loss functions

Our work designs an improved loss function by reproduc-

ing and making several improvements to the SN-Patch-

GAN loss, which consists of the pixel-wise reconstruction

loss for reconstructing the missing region and conditional

adversarial loss for generating more details with reference

image, which can be expressed as:

Lall ¼ k1 Lrec þ k2 Ladv; ð9Þ

where Lrec, Ladv, respectively, represent the pixel-wise

reconstruction loss and the conditional adversarial loss, k1,
k2 stand for the weights of the reconstruction loss and the

conditional adversarial loss, with default as 1.

Reconstruction Loss The network chooses L1 distance

between the ground truth image and the restored image as

our reconstruction loss function Lrec:

Lrec ¼ Igt � Io
�� ���� ��

1
; ð10Þ

where Igt represents the ground truth image and Io stands

for the restored image by our network. We experimented

with both L1 and L2 losses and found L1 loss performs

better.

Adversarial Loss It aims to enhance the visual quality of

the restored image through adversarial training. Our model

adjusts the SN-PatchGAN loss for our conditional adver-

sarial network training. The reference image is added as a

conditional prior to the original adversarial loss. The gen-

erator loss LG and the discriminator loss LD are as follows:

Fig. 4 Illustration of the contextual attention layer. The convolution is

utilized to compute the matching score of patches with themselves.

Then the attention score can be obtained by softmax and be

deconvolved for reconstruction
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LG ¼ �Ez�PIt
Dsn G zjyð Þð Þ½ �;

LD ¼ Ex�PIgt
ReLU 1� Dsn xjyð Þð Þ½ �þ

Ez�PIt
ReLU 1þ Dsn G zjyð Þð Þð Þ½ �;

ð11Þ

where PIt , PIgt are the distributions of the original masked

target input and the ground truth image, respectively. x, z

represent real and fake data. Dsn represents spectral-nor-

malized discriminator. y stands for reference input as the

conditional prior, and G zjyð Þ is the image inpainting net-

work that takes the masked target input image Igt and

reference image It to generate the final output Io.

4 Experiments

4.1 Datasets and evaluation metrics

Datasets Our method is trained and tested in CelebA

dataset [46]. The dataset is divided into 68,754 groups of

input data (a masked target image and a reference image)

by the identity label. Our network randomly selects 57,996

groups for training and 10,758 groups for testing from the

datasets, which totally contains 137,508 images. Our test

set does not contain the training set. For each reference

image, it matches each masked target input. The image pair

and the inpainting result are shown in Fig. 5.

Evaluation Metrics To quantitatively evaluate our

method on synthetic datasets against other inpainting

methods, our work employs the Peak Signal-to-Noise

Ratio(PSNR) and the Structural Similarity Measure(SSIM)

as the evaluation metrics. PSNR can be mathematically

defined as:

PSNR X; X̂
� �

¼ 20 log10
2n � 1ffiffiffiffiffiffiffiffiffiffi
MSE

p
� 	

; ð12Þ

where X and X̂ represent the original image and the com-

plete image, respectively. n denotes the total number of

pixels of X̂, and MSE stands for the Mean Squared Error.

SSIM can be formulated as:

SSIM X; X̂
� �

¼
2lXlX̂ þ C1

� �
2rXX̂ þ C2

� �

l2X þ l2
X̂
þ C1


 �
r2X þ r2

X̂
þ C2


 � ; ð13Þ

where lX , lX̂ stand for the mean of X and X̂. rX , rX̂ rep-

resent the standard deviation of X and X̂, respectively.

4.2 Quantitative evaluation

The PSNR and SSIM values of our generated image are

quantitatively compared against the state-of-the-art

inpainting methods on the CelebA dataset [46], as show in

Table 1. The other methods including CA [9],

EdgeConnect [32], LaFIn [39], SN-PatchGAN [11], and

SPL [33].The data show that our proposed method per-

forms favorably against other inpainting methods except

SPL [33] in PSNR and SSIM. Specifically, EdgeConnect

[32] and LaFIn [39], respectively, utilize an edge generator

and a landmark predictor to guide the inpainting process,

and they both perform well in inpainting tasks. However,

the evaluation score of our method is high compared to

EdgeConnect [32] and LaFIn [39] because our model can

Fig. 5 Our method’s corresponding image groups, masked input, and

inpainting results.

Table 1 Average PSNR and SSIM of different inpainting methods on

CelebA dataset

Methods PSNR SSIM

CA [9] 29.0568 0.9325

LaFIn [39] 31.4414 0.9406

EdgeConnect [32] 30.3623 0.9289

SPL [33] 33.7557 0.9537

SN-PatchGAN [11] 32.1413 0.9435

Ours 33.2162 0.9505
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obtain more reference information and attend more details

by referring to another image. The PSNR and SSIM of CA

[9] is obviously lower than our method. The restored effect

of SN-PatchGAN [11] is close to our method, but due to

the lack of personal information from single masked input,

it is still slightly inferior to our method. In addition, our

work tests different sizes of mask as shown in Fig. 6,

ranging from 20 to 80% of the width of the original image,

to evaluate the generalization ability of all the methods.

Figures 7 and 8 show the different results of the PSNR and

SSIM. The performance of these methods gradually drops,

which is expected as the larger missing regions presents

more uncertainties in pixel values. The line charts show

that our method can also show better performance than

other methods except SPL [33] when dealing with different

sizes of occlusion.

As for SPL [33], the model adds semantic priors as a

guide and exploits features of a multi-label classification

model as the supervisions for leaning semantic priors.

Therefore, the model achieves better results in the global

evaluation of SSIM and PSNR. In comparison, our model

has a slight disadvantage in terms of scores. This is mainly

because our model, in order to recover more texture details

and content features that are more similar to their own,

pays attention to the reference information of another ref-

erence image while referring to the original incomplete

image. Therefore, the reference image inevitably leads to

our model showing a disadvantage in calculating the

evaluation scores of PSNR and SSIM. Nevertheless, our

model is still better than most other models. More impor-

tantly, compared with SPL, our method can visually

recover missing information with more coherent content

and more consistent semantics. As shown in Fig. 9, this

result is encouraging. Due to the lack of processing of local

information and insufficient reference information, the SPL

causes problems such as blur, especially in the case of large

occlusion.

4.3 Qualitative evaluation

The visual inpainting effect of our model is shown in

Fig. 5. In the figure, it can be seen that the inpainting result

of our model contains both context information and refer-

ence image information, and has the effect of consistent

content and clear texture. Furthermore, when the angle of

Fig. 6 The masked image with

different proportions of the

original image.

Fig. 7 Evaluations of SSIM on different square mask sizes of all the

methods in the CelebA test dataset [46].

Original Input SPL Ours

40
%

50
%

60
%

Fig. 9 The comparison between our method and the SPL [33] method

in the case of different sizes of occlusion.

Fig. 8 Evaluations of PSNR on different square mask sizes of all the

methods in the CelebA test dataset [46].
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the reference image and the target image are different, or

the reference image with glasses and the target image

without glasses, or the reference image without glasses and

the target image with glasses, our repair results still achieve

the desired effect. It shows that our model has certain

robustness in dealing with situations where the reference

image and the target image are very different.

In addition, the visual quality of our complete images is

further compared with the generated images of other ref-

erence inpainting methods on the CelebA dataset [46]. As

shown in Fig. 10, the first three rows are, respectively, the

reference image, the original image, and the masked input

image, each of the last four rows represents the result of

each method. In addition, each column represents the result

of a different method on the same example. From the sixth

row in Fig. 10, it can be seen that there are apparent arti-

facts in the inpainting results of the SPL [33]. Especially in

the case of large occlusion, the restored results are obvi-

ously distorted. In contrast, the result of our method is

visually more coherent and semantically more consistent.

From the fourth and fifth rows in Fig. 10, the results of

EdgeConnect [32] and LaFIn [39] are relatively good, but

they have low similarity with people’s own images or even

no longer similar to themselves. Our methods with refer-

ence images can generate images sharper in vision and

more consistent texture than other methods, which can be

clearly seen in the last column of Fig. 10. More impor-

tantly, the image generated is more similar to people’s own

images in vision by paying more attention to the reference

image in the stage of refinement inpainting. For example,

in column 1, the eye corners of the image repaired by our

method are more similar to her own reference image. In

column 4, the structural features of the eyes and eyebrows

are clearly derived from his own reference image and so

on. The repair results of other methods distort their own

personal characteristics. Both quantitative and qualitative

evaluations demonstrate the superiority of our proposed

method on the CelebA [46] dataset.

5 Ablation study

The above part has quantitatively and qualitatively shown

that our proposed method performs favorably against other

inpainting methods. In this section, the paper further dis-

cusses our proposed reference-guided inpainting by abla-

tion study.

Quantitative evaluation In this part, our work conducts

experiments and quantitative evaluations on the two data-

sets of CelebA [46] and LFW [47]. As shown in Tables 2

and 3, the part compares the PSNR and SSIM values of the

image generated by our methods, including the first stage

of coarse inpainting without a reference image, the first

stage of coarse inpainting with a reference image, the final

results without a reference image, and the final results with

reference image. The group of A,B and the group of C,D

from Table 2 and Table 3 illustrate that our inpainting

method with reference image is better than the method

without reference image in both the coarse result and the

final results. It proves that our introduced reference image

is effective for improving the inpainting effect. At the same

time, when the reference image is missing, our repair

results are also higher than some other typical methods,

which shows that our model has a certain degree of

robustness to deal with the case of reference image miss-

ing. This is because our model retains the dilated gated

convolutional layer in the three branches and the role

played by our contextual attention layer. In addition, the

group of A,C and the group of B,D from the Table show

that the indicators of PSNR and SSIM have all improved. It

proves that our designed second stage of refinement

inpainting and reference attention are essential to generate

better results. The experimental results in the celeba dataset

[46] show that when there is no reference image as con-

ditional input, the result has not improved very
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Fig. 10 Four examples of qualitative evaluation on CelebA dataset

[46]. SPL [33] is based on the semantic priors to restore the image.

EdgeConnect [32] and LaFIn [39], respectively, take an edge

generator and a landmark predictor as a guidence
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significantly even if the second stage of refinement

inpainting stage is added. In contrast, the final repair effect

with the reference guide is significantly improved com-

pared to the first stage repair effect. It demonstrates that our

designed reference attention layer needs the reference

image, and can utilize the image to generate better textural

and structural content. Due to the small number of images

in the LFW dataset [47], the convergence is not high, so the

above phenomenon is not obvious enough, but the data

results can also show the superiority of the repair effect

after adding the reference image. The quantitative experi-

ment illustrates the effectiveness of our proposed refer-

ence-guide method in the two stage inpainting works.

In addition, the paper conducts an ablation study on the

three-branch network layer of the refinement inpainting

stage. The quantitative experimental results are shown in

Table 4. The results of Table 4 show that when all atten-

tion layers are removed, the results of PSNR and SSIM

decrease significantly. It proves the significance of the

attention layer introduced by us for inpainting. The results

B,D and C,D of Table 4 show that when the attention layer

is added to our model, the PSNR and SSIM will be

improved. And when two attention layers exist at the same

time, the best performance of the model can be achieved.

That is because the network of the context attention layer

and the reference attention layer can respectively match

more similar patch blocks from the original input and the

reference input to guide the network learning. Finally,

when we remove the dilated gated convolutional layer, our

model will be unable to retain more effective information,

resulting in a decrease in model performance.

Qualitative evaluation As shown in Fig. 11, this part

firstly shows the comparison of the final results of two

different situations. The one case is the images restored

with the reference image, which can be seen in the fourth

row. And another case is the images restored without the

reference image, which can be seen in the last row. The

first column shows that the eyes of the generated image by

inpainting method without a reference is bigger than by

inpainting method with a reference. And it can be seen that

the generated image with reference is more similar to the

original image and the reference image. This is because the

reference attention layer of the inpainting stage refers to

more similar textural details from the reference image. In

addition, the second column, the third column, and the last

column of Fig. 11 illustrate that the hairs, the eyebrows,

and the nose of the generated image by inpainting method

with a reference are more similar to the original input and

Table 2 Average PSNR and

SSIM of our method in different

situations on CelebA [46]

dataset

Methods PSNR SSIM

(A) The First Stage of Coarse Inpainting without Reference 29.4183 0.9188

(B) The First Stage of Coarse Inpainting with Reference 30.6402 0.9315

(C) Final Result without Reference 31.7201 0.9438

(D) Final Result with Reference 33.2162 0.9505

Stage 1 result represents the coarse inpainting result by our method

Table 3 Average PSNR and

SSIM of our method in different

situations on LFW dataset [47]

Methods PSNR SSIM

(A) The First Stage of Coarse Inpainting without Reference 26.8153 0.8907

(B) The First Stage of Coarse Inpainting with Reference 27.8464 0.9187

(C) Final Result without Reference 27.3297 0.9201

(D) Final Result with Reference 28.8656 0.9283

Stage 1 result represents the coarse inpainting result by our method

Table 4 Average PSNR and

SSIM of our ablation study of

three-batch Encoders on CelebA

[46] dataset

Methods PSNR SSIM

(A) Our Method without Conventional Convolution Branch 32.1620 0.9361

(B) Our Method without Contextual Attention Branch 32.8396 0.9428

(C) Our Method without Reference Attention Branch 32.7761 0.9411

(D) Our Method without Any Attention 30.3011 0.9335

(E) Our Method 33.2162 0.9505
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the reference image. As shown in the green box and red

box of Fig. 11, the similarity between generated parts and

original parts is reduced when the reference-guided image

is removed. It also proves that the reference image can

provide more information to the model.

Furthermore, the qualitative experimental results of the

three-branch network layer are shown in Fig. 12. When the

dilated gated convolutional layer is removed, the repair

result is obviously blurred as shown in Fig. 12a. It proves

that the convolution layer has the effect of perceiving the

original input features. When there is no attention layer,

our model restores a distorted result as shown in Fig. 12b.

When the context attention layer or reference attention

layer is introduced, the model can overcome some distor-

tion and blurring by referring to useful information as

shown in Fig. 12c and d. But these repair effects are all not

as good as our three-branch repair network with double

attention layer. That is because our method is aware of

contextual images and reference images structures and can

adaptively borrow information from surrounding areas and

reference areas to help the synthesis and generation.

Interestingly, additional discovery is shown in Fig. 13.

When a false image(not belong to the identity of the

original input and different in gender) is the reference

input, the model will learn the structure and texture of this

false image in the refinement inpainting stage. Although

the repair results in the first stage are not much different, it

causes gender distortion in the final repair result. Never-

theless, the consistency of texture content and visually

reasonable results can still be guaranteed, which shows that

our model is robust to processing image pairs of different

labels. According to previous work experience and our
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Fig. 11 Qualitative evaluation

of our method with and without

reference-guided image

Fig. 12 The ablation study on CelebA dataset of each layer of the

three-branch Encoders, where b represents the results after removing

all the attention layers. a, c and d, respectively, represent the results

after removing each layer in the three-branch network.
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analysis, this is closely related to the structural character-

istics of the GAN network. This phenomenon fully illus-

trates the guiding roles of our reference-guided mechanism.

And our reference attention can learn the guidance of ref-

erence images to reconstruct the missing regions. The

above quantitative and qualitative ablation evaluations

demonstrate the superiority and effectiveness of our pro-

posed method for face inpainting.

6 Conclusion

In this paper, we propose a reference-guided inpainting

method for irregularly masked face images. By utilizing

the CGAN framework to take the reference image as a

conditional input and introducing a reference attention

module to attend on the reference, our method generated a

final result with better visual effects and more similar to

people’s own photographs. Both quantitative and qualita-

tive evaluations on the CelebA dataset and LFW dataset

demonstrate the effectiveness of the proposed method.

However, only two valuable celebA dataset and LFW

dataset with the identity label are found, which can be

divided into tens of thousands or thousands of image pairs

by identity. In future work, we will continue to explore

how to select the reference image with the most similar

label from a large number of images and explore high-

resolution reference-guided facial image inpainting.
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